Accuracy of ⁹Be-data

and its influence on ¹⁰Be cosmogenic nuclide data <u>S. Merchel^{a,*}, W. Bremser^b, D.L. Bourlès^c, U. Czeslik^d, J. Erzinger^e,</u> N.-A. Kummer^f, L. Leanni^c, B. Merkel^f, S. Recknagel^b, U. Schaefer^g

Introduction

Radiochemistry

Problem

Accelerator mass spectrometry (AMS) & cosmogenic nuclides (CN)

- \neq method of choice for determination of ¹⁰Be (t_{1/2} = 1.378 Ma): AMS [1,2]
- ¹⁰Be/⁹Be as low as 10⁻¹⁶

i need for radiochemical separation to enrich ¹⁰Be & reduce matrix: 0.1 - 300 g sample >>> 0.5 mg BeO

commercial ⁹Be-carrier contains intrinsic ¹⁰Be @ the level of 0.3 - 4 - 10⁻¹⁴

¹⁰Be (=CN) produced by nuclear reactions in space

⁹Be *f* most samples natural low in too are >>> addition of ⁹Be-carrier solution of known concentration for sample preparation

>>> ⁹Be-atoms taken into account to calculate the number of ¹⁰Be-atoms in sample

If ⁹Be is wrong, ¹⁰Be is wrong!

>>> ¹⁰Be too high for several applications >>> need for home-made ⁹Be-solution from phenakite (Be₂SiO₄) or beryl $(Be_3Al_2Si_6O_{18})$ crystals

f after several weeks of chemistry [3]: ⁹Be-solution

>>> need for accurate ⁹Be-measurement

First idea: Replicate "French" work

F Three independent measurements:

- gravimetry
- flame atomic absorption spectrometry (AAS)

⁹Be-measurements & -data **Round-robin labs, methods & data**

2 out of 3 labs remeasured/-calculated (-9 % & +6 %) additional labs: + 4 research, + 1 commercial (

Data evaluation - Simple

- **Grubbs outlier** at significance level of $\alpha = 0.01$: commercial lab "1" (GFAAS) >>> removed!
- distribution basically normal

graphite furnace AAS (GFAAS)

of earlier ⁹Be-solution (Phena-DD) **@** CEREGE: (3025 ± 9) μg/g >>> 0.3 % uncertainty (••)

- **New Phena-EA solution analysed:**
 - gravimetry: $(2214 \pm 84) \mu g/g$
 - inductively coupled plasma-mass spectrometry (ICP-MS): $(2038 \pm 128) \mu g/g$
 - inductively coupled plasma-optical emission spectrometry (ICP-OES): $(2400 \pm 14) \mu g/g$
 - (2217 ± 181) µg/g >>> 8 % uncertainty (~)

>>> Find additional labs for round-robin exercise!

/	⁹ Be [µg/g]	method	lab-code	
	2193 ± 307	ICP-OES	1: commercial lab	
	2196 ± 4	ICP-OES	2: research lab	
	2214 ± 84	gravimetry	3: research lab	
	2233 ± 6	ICP-MS (st.ad.)	4: research lab	
	2245 ± 269	ICP-MS	1: commercial lab	
	2251 ± 135	ICP-MS	5: research lab	
	2265 ± 15	ICP-MS	4: research lab	
	2266 ± 21	ICP-OES	6: research lab	
	2278 ± 8	AAS (flame)	7: research lab	
	2285 ± 114	ICP-MS	8: research lab	
	2295 ± 46	GFAAS	8: research lab	
	2495 ± 125	GFAAS	1: commercial lab	

mean and median not significantly different weighted mean metrologically the very best estimate: $(2221 \pm 10) \mu g/g >>> 0.44 % uncertainty$

⁹Be-data **Data evaluation - Sophisticated**

mutual agreement values E_n

E_n between two individual labs given by

 $E_n = |x_a - x_b| / \sqrt{[u^2(x_a) + u^2(x_b)]}$

with $x_i = individual lab result$

methods are slightly, but not significantly different (also proven by ANOVA)

1	I	1	
2300 -			_

Conclusions

maximum deviation of single lab result from weighted mean ~3.3 % >>> need for all labs using non-commercial ⁹Be-carrier to have it analyzed at more than one lab (outlier lab- Δ =12 %!)

very likely that same problem arises if measuring individual samples >>> constant quality assurance checks by e.g. taking part in round-robin exercises necessary

 $u(x_i) = uncertainty of ⁹Be as stated by lab$

⁹Be result from lab a compatible with ⁹Be result of lab b, if $E_n < 2$

labs 2 and 4 underestimate grossly their \rightarrow uncertainty

differences might be even more prominent at the ng/g-level

No accurate ¹⁰Be-data without accurate ⁹Be-data (carrier & samples)!

Acknowledgments

C. Varajão (Universidade Federal de Ouro Preto) kindly provided the phenakite sample. **R. Braucher (CEREGE) is thanked for helpful discussions and organizing skills.**

References [1] Talk S. Merchel, Thursday, 28.02.@12 h

[2] Akhmadaliev et al., NIMB 294 (2013) 5. [3] Merchel et al., NIMB 266 (2008) 4921.

 (\cdot)

^a Helmholtz-Institut Freiberg für Ressourcentechnologie, DE; ^bBAM, Berlin, DE; ^cCEREGE, Aix-en-Provence, FR; ^dVKTA, Dresden, DE; ^sS.merchel@hzdr.de; www.dresden-ams.de